Cybersecurity is de verzamelnaam voor alle beschermingsmaatregelen tegen hacking.

Het is de bezorgdheid over het vermogen van hackers om

  • toegang te krijgen tot livebeelden van camera’s.
  • opgenomen beelden van recordders te manipuleren.
  • malware te installeren die cyberaanvallen uitvoeren.
  • ransomware te installeren die het bedrijfssystemen blokkeren.

Veel fabrikanten van professionele camera's hebben op de dreiging gereageerd door het gebruik van een standaardwachtwoord niet toe te staan.

Hackers zullen echter waarschijnlijk blijven zoeken naar andere manieren om toegang te krijgen tot gegevens, onder meer via de ‘achterdeur’ van een camera.

Ongeacht of het nu voor criminele of kwaadaardige doeleinden is, of gewoon als een uitdaging wordt gezien door amateurhackers, het is essentieel dat de vertrouwelijke gegevens van eindgebruikers veilig worden bewaard.

Dit geldt net zo goed voor de vele kleine bedrijven die op een CCTV videobewakingssysteem vertrouwen om hun bezittingen, mensen en eigendommen te beschermen, als voor hoog beveiligde en bedrijfskritische eindgebruikers, zoals luchthavens, banken, lokale autoriteiten, overheid , militaire en hulpdiensten.

Hoewel geen enkele fabrikant 100% garantie kan bieden dat hun producten nooit zullen worden gehackt, zullen de chipsets van de volgende generatie waarschijnlijk een lange lijst van technologieën bevatten die de cyberbeveiliging van de camera's waarin ze zijn ingebouwd aanzienlijk zullen verbeteren.

 

 


Uri Guterman, Head of Product & Marketing and Elaine Moran, Technical Support & Field Engineer for Hanwha Techwin Europe have jointly produced a jargon-busting explanation of video surveillance cyber security terminology and a reminder that combatting the activities of hackers needs to remain a top priority.


Concerns about the ability of hackers to access live images or retrieve recorded images captured by video surveillance cameras located in security-sensitive areas have been around for a while. Many manufacturers of professional-level cameras have responded to the threat by introducing device network set-up protocols which do not allow for a default password, or one that has consecutive letters or numbers, to be used. However, hackers are likely to continue to look at other ways to gain access to data, including via a camera’s ‘back door’.

Regardless of whether it is for criminal or malicious purposes, or just seen as a challenge by amateur hackers, it is essential that end-users’ confidential data is kept secure. This applies just as much to the many thousands of small businesses that entrust video surveillance solutions to protect their assets, people and property, as it is for high security and mission-critical end-users, such as airports, banks, local authorities, government, military and emergency services.

Designed with cyber security in mind

Most responsible manufacturers of video surveillance cameras should have recruited appropriately skilled software engineers to quickly produce firmware updates as new threats emerge. At Hanwha Techwin, our Security Computer Engineering Response Team (S-CERT) is totally focused on addressing any potential security vulnerabilities in our Wisenet products and solutions. Members of the team have been hand-picked for their expertise in being able to identify, analyse and quickly respond with effective countermeasures, to any cyber security threats.

Manufacturers should also be using independent cyber security testing agencies to help them identify any vulnerabilities. However, as in all areas of life, prevention is better than the cure. This is why manufacturers such as Hanwha Techwin are equipping their latest generation of cameras with chipsets which have been developed from the ground up, to minimise the risk of unauthorised access by hackers and the infiltration of malicious firmware.

Whilst no manufacturer can offer 100% guarantee that their products will never be hacked, the next generation chipsets on the horizon are likely to incorporate a long list of technologies which will significantly improve the cyber security credentials of the cameras they are built into.

Jargon Explained

Some of these technologies are new and have been developed specifically to combat cyber-attacks whilst others, which were originally intended simply to make chipsets more efficient, are also able to contribute to camera security. Almost all, when mentioned in video surveillance-related documents, datasheets or on the Internet, are stated as acronyms or have names which do not make it obvious what they are intended to do. Here, therefore, is an explanation of some of those you are most likely to come across.

  • Anti-Hardware Clone: Anti-hardware clone functionality prevents a chipset from being cloned. In addition to protecting intellectual property, this ensures that a chipset with a manufacturer’s label is a genuine copy and removes the risk of a cloned device which may contain malicious software being used to steal sensitive data such as passwords.
  • Crypto Acceleration: When applied to video surveillance solutions, crypto acceleration is normally referred to within the context of a camera chipset performing complex mathematical functions for encryption and decryption This is a very intensive operation requiring the chipset to use a large proportion of its resources. Equipping chipsets with a dedicated ‘engine’ for this purpose ensures that encryption/decryption is efficiently carried out, without affecting other camera functionality.
  • Image Scrambling: Between the location of a camera and where the images it captures are remotely viewed, recorded and stored, there is always the possibility that a cyber criminal could hack into the network and gain access to what may be confidential video and data. Image scrambling is the encryption of video prior to transmission over the network. It does so by randomly rearranging the pixels of each image so that it cannot be viewed by anyone maliciously hacking into the network.
  • Secure JTAG: JTAG ports are hardware interfaces which are used to programme, test and debug devices. However, they can be compromised by cyber criminals to gain low level control of a device and perhaps replace firmware with a malicious version. This can be prevented by securing the JTAG port via a key-based authentication mechanism to which only authorised personnel working for the manufacturer have access.
  • Secure UART: UART ports are serial interfaces typically used for debugging cameras. They allow administrator access to a camera and are therefore a target for hackers attempting to access sensitive information such as password keys. Hackers could also potentially access a camera’s firmware in order to reverse engineer it, as well as examine it for vulnerabilities in the device’s communications protocols. Enforcing restricted and secure access to the UART port, will allow the debugging process to be safely completed, without opening the door to cyber criminals.
  • OTP ROM: This is an acronym for One Time Programmable Read Only Memory which allows sensitive data, such as encryption keys, to be written only once onto a chipset and then prevents the data from being modified. This protects the integrity of encryption keys which are used to validate the stages in a secure boot up sequence and allows access to the JTAG Port.

 

  • Secure Boot Verification: Secure Boot provides an extra layer of security by sandboxing different elements of a camera’s operating system, which means they are in a protected space. The system will complete a full boot before communicating with any other part of the system and this prevents an interruption to the boot process which could be exploited by a hacker.
  • Random Number Generator: Computers are designed to create very predictable data and are therefore not very good at generating random numbers which are required for good encryption. A dedicated random number generator overcomes this problem by having a dedicated mechanism for the task.
  • Secure OS: Using a separate operating system (OS) for encryption and decryption, as well as for verifying apps have not been modified or are forgeries, reduces the workload of a camera’s main OS. A separate Linux based API is needed to access a Secure OS and without this, there is no way to make any changes from the outside of a camera. A Secure OS should always, therefore, be used to process important stored information.

In a highly competitive market, there is no shortage of camera manufacturers to choose from. Consultants, system designers and systems integrators therefore have the freedom to narrow down their shortlist of preferred supplies to those who have fully embraced and incorporated best practise into their manufacturing process. A clear demonstration of this would be if they have equipped their cameras with most, if not all, of the above functionality and technology.

Do you have some questions about cyber security? Email Uri Guterman at: Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein.